Trends in Experimental Communications Technology Satellites

Jon Michael Smith ACTS Program Advocate Johnson Space Center

David R. Beering
Infinite Global Infrastructures, LLC
Wheaton, IL

Topics

- Trends
- New Developments
- Configurability & the Advanced Communications Technology Satellite
- Multi-Tech Scaleable Experiments for X-CTSats
- New Wideband Users
- X-CTSat Inevitables
- Contacts
- ACTS Transmitter Scaling Data Base

Trends

- Trend-1. Geometric growth in the time between Com Technology X-CTSats
- Trend-2. Geometric growth of the cost of Com Technology X-CTSats
- Trend-3. Multi-Technology X-CTSats
- Trend-4. Virtual Terrestrial Networks for X-CTSats

New Developments

- Government Doctrines to use Commercial Communications Satellites
- NASA's IOA...Space Operations on the Internet
- Transforming Information into Energy –
 broadband mobility leads to other new markets
- Great Challenges of the HPCC program
- Drift Orbit Operations for the Advanced Communications Technology Satellite (ACTS)
- Disaster Management & Hybrid Networks
- International Orbital Debris Policies

Configurability & the Advanced Communications Technology Satellite

- 5/31 Modes used during 5 years of operations
- Reconfiguration conducted routinely
- Baseband Processor (BBP) mode
- Microwave Switch Matrix (MSM) mode
- Mixed Modes

Multi-Tech Scaleable Experiments for X-CTSats

- Transmitter Scaling Equations
- DR = C*P*R^2*E*W*B/Mg
 - HDRT scaling equation
 - DRH = $8.3034E-06*P*R^2*E*W*B/Mg$
 - V-SAT scaling equation
 - DRV-Sat = $1.33E-03*P*R^2*E*W*B/Mg$
 - USAT scaling equation
 - DRU-Sat = $2.38E-02*P*R^2*E*W*B/Mg$
- P=Power~watts, R=Antenna Radius~meters, E=Encoding Gain~4for qpsk...2 for bpsk etc, W=Frequency~GHz, B=Modem Bandwidth~MHz, Mg=Margin~2 for 6db...etc.

New Wideband Users

- ARIES
- Telemedicine
- Distance Education
- Innovative Military Applications
 - Fixed Satellite Services
 - Mobile Satellite Services
- Integrated Operations Architecture
 - NASA's Consolidated Space Operations Contract (CSOC)

X-CTSat Inevitables

- Continued Propagation Research from groundbased test sites
- Research investigating higher frequencies (W-Band, V-Band, Optical)
- Communications Research on the Space Station
- Piggyback Research Payloads on Commercial Satellites
- Scaleable Experiments Research

X-CTSat Inevitables (cont.)

- Reconfiguration Research
- Protocol, Standardization, and Coding Research
- Integrated Network Research
- Integrated Com-Cam-Comp Technology Research
- Orbital Debris Management
- Increased NASA / Industry Collaboration

Contacts

- For ACTS program experiments
 - Robert Bauer (robert.bauer@grc.nasa.gov)
- For Hybrid Network experiments
 - Mike Zernic (mzernic@grc.nasa.gov)
 - Dave Beering (<u>drbeering@sprynet.com</u>)
- For the X-CTSat Inevitables
 - Mike Smith (jon.m.smith1@jsc.nasa.gov)

ACTS Transmitter Scaling Data Base

Data Rate	Margin	Margin	Power	A-Radius	ModSch	Freq	Modem	C
Megabits/Sec	Integer	db	Watts	Meters	Integer	Ghtz	MHz	Number
622.00	2	6.02	120	3.4	4	30	900	8.30E-06
27.50	2	6.02	12	1.2	2	30	40	1.33E-03
1.54	2	6.02	2	0.6	2	30	3	2.38E-02